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We will follow [Mil] pretty closely.

1 Sites

We are going to categorify our idea of topology. The idea is to consider the topology as only the
open sets, as a lattice, and not worry about the points that are contained in it. This perspective is
ubiquetous in AG and explains their abuse of the word point.

Example. We start with a topological space (X, T ). To this there is a naturally associated category

Open(X) ..=

{
objects : open sets

morphisms : inclusion maps

This has the important categorical property of all pullbacks existing is there a word
for this?

V ′ ∩ V V

V ′ U

i

i′

If you include into V and V ′ then you must include into their intersection.

A site is a category C along with the data of ”coverings”. That is for every object c ∈ C there is
a set of ”coverings”, a collection of collections of maps Cov(c) = {(Ui → c)ji∈I}j∈J which satisfy the
normal topological properties of coverings

� The identity map is a covering.
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� For any covering (Ui → c)i and any morphism V → c (in C ) the fiber products / pullbacks exists
and

(Ui ×c V → V )

is itself a covering of V, i.e. it is an element of Cov(V )

� If (Ui → c)i is a covering and for each i ∈ I (Ui,j → Ui)j is a covering of Ui then (Vi,j → c)i,j is
a covering of c

when is a site
actually given
by a topological
space?

Example. In the case of the category Open(X), then normal topological coverings suffice. I will
illustrate the properties

Example. If X is a scheme then we have the (small) Zariski site Xzar given by treating it as a
topological space.

2 Sheaves on Sites

Presheaves of some things on a site (C , J) are defined as usual as functors

F : C op → Category of those things

such a presheaf F is in addition a sheaf if for every c ∈ C and every covering (Ui → c)i F (c) equalizes
the diagram ∏

i∈I

F (Ui) ⇒
∏
i,j∈I

F (Ui ×c Uj)

We denote Sh(C ,D) to be the category of sheaves in D on the site C , where the target category is
clear from context we simply write Sh(C ). Categories of the form Sh(C ,Set) are called Topoi if they
are abelian they are trivial.

Example. Any sheaf on a topological space X becomes a sheaf on Open(X) in the obvious way.

Example (Hom). In particular if X,Y are topological spaces then there is a sheaf (of sets) of con-
tinuous Y valued functions on X, namely HomTop(−, Y ), which indeed lifts to a sheaf on the site of
Open(X).
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More relevant (and fixed from now on) is Sh(C ,Z-modules) or sheaves of abelian groups. This
category has two very nice properties it is an abelian category and moreover has enough injectives.
This allows us to define sheaf cohomology as a right derived functor. In detail let

Γ(−,−) : Sh(C )× C → Ab

Γ(F , U) = F (U)

Then the sheaf cohomology of an object U ∈ C is defined to be the right derived functor of Γ(−, U).
In particular

Hr(U,F ) ..= Hr(0 → Γ(I0, U) → Γ(I1, U) → · · · )

where
0 → F → I0 → I1 → · · ·

is an injective resolution of F .

Example (Simplicial). It is a theorem that under some conditions on the topological space X (para-
compact, locally contractable) that for any abelian group G we have that

Hi(X,G) ∼= Hi
sing(X,A)

where X ∈ Open(X) and G is the constant sheaf on this site assigning G to every open.
https://public.websites.umich.edu/~mmustata/SingSheafcoho.pdf

https://arxiv.org/pdf/1602.06674

3 The Etale Topology

3.1 Zariski Bad

If you want a cohomology theory for varieties there are two things to try, do the simplicial thing
directily, which Oliver claims is not very nice, or useing the above theorem to motivate using sheaf
cohomology. This doesnt work either unfortunately. A topological space is irreducible if it cannot be
written as the union of two proper closed subsets, or equivilently any two non-empty opens have a
non-empty intersection.

Theorem. If X is an irreducible topological space and F is a constant sheaf then

Hr(X,F ) = 0, r > 0

Proof. See [Mil80, Thm 1.1]

This clearly applies to varieties and so we might start to worry, the zariski topology on a variety
seems to always have trivial cohomology, and this generalises to schemes which are just built out of
these things. So basically cohomology theories on these sorts of things are going to be degenerate. So
the Zariski site is not the right topology for cohomology of varieties.

3.2 Etale Good

Now we are thinking of topological spaces in a point free way and we see that what we really need is to
specify covers. But if we define a class of morphisms that are preserved under pullback and the other
cover operations we can think of them as a ”sub-topology” or a sub cover. So this is what we will do
we will introduce a class of morphisms and then take covers to be morphisms of schemes satisfying
that property.
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3.2.1 Commutative Algebra

Fix X,Y two schemes. To define a property of a morphism φ : Y → X we will do what we always do;
we will define a property of maps of rings and then ask that the morphism of schemes satisfies this
property on the stalks or some affine opens.

A morphism of rings A → B is flat if the functor

M 7→ M ⊗A B

is exact (recall that a morphism of rings is the same as an A algebra). Then φ is flat if the induced
map on stalks is

OX,φ(y) → OY,y

is flat for every y ∈ Y . Or equivilently if for all affine opens the map induced on the sections of those
opens is flat.

A local homomorphism of local rings f : A → B is unramified if B/f(mA)B is a finite seperable
extension of A/mA. Then φ is unramified if it is of finite type and the induced map

OX,f(y) → OY,y

is unramified for every y ∈ Y .
A morphism is etale if it is both flat and unramified.

Example. Any projective module is flat, in particular free modules are flat. Therefore spec’ing these
morphisms give flat morphisms of schemes.

If L/K is an extension of number fields with respective rings of integers OK ,OL, then the inclusion
K → L induces an inclusion OK → OL which gives a morphism after spec’ing

f : Spec(OL) → Spec(OK)

then this is unramified at p ∈ Spec(OK) iff this prime ideal is unramified in the algebraic number
theory sense, which we recall means that the residue fields are seperable and the powers are 1 for each
prime appearing in the decomposition of the image of p under this map.

This map also turns out to be flat etc. But it requires more commutative algebra.

3.2.2 Geometry

Lets look at what the geometric meaning of this definition is. Consider W,V non-singular algebraic
varieties over an algebraically closed field k. Let φ : W → V a regular map.

Theorem. φ is etale at x ∈ W iff the induced map

dφ : TxW → Tφ(x)V

is an isomorphism. φ is etale iff it is etale at every point.

Proof. [Mil80, Prop 2.9]

this condition is reminiscent of the inverse mapping theorem for smooth things and so we might
hope that there is some condition on the Jacobian of the map, whatever that means. We have such a
condition

Theorem (Stacks Project Lemma 29.36.15). Let

f : Spec
R[x1, ..., xn]

(f1, ..., fn)
→ SpecR

then this map is etale at q ⊆ R[x1,...,xn]
(f1,...,fn)

(prime) if

det(
∂fi
∂xj

)i,j /∈ q
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recall that these are just the conditions for the inverse mapping theorem, so etale maps are remi-
niscent of local diffeomorphisms.

Example. Consider the map
A1

k → A1
k

Spec k[x] → Spec k[s]

That is induced by spec’ing the following inclusion

k[s] → k[s][x]/(s− xn) ∼= k[x]

s 7→ xn

Now the jacobian is
∂(sn − x)

∂s
= nsn−1

and we need to identify which prime ideals of k[x][s]/(s− xn) contain the polynomial nsn−1, or equiv-
ilently by pulling back along the above isomorphism the prime ideals of k[x] which include n(xn)n−1 =

nxn2−n.
Clearly if char(k)|n then this map is clearly never etale, as nxn2−n = 0 ∈ (0) and hence contained

in every prime. One can also see that it is not etale at (x) because clearly nxn2−n ∈ (x). It is etale
everywhere else because (x) is not contained in any other prime ideal.

Example (Field Extensions). Consider a field extension

Q → Q[3
√
17] ∼=

Q[x]

x3 − 17

then we want to look at when the spec of this map is etale. The Jacobian is just

∂(x3 − 17)

∂x
= 3x2

Moreover Q[x]/(x3 − 17) is a field, hence its only prime ideal is (0). So this is etale for because in
Q[x]/(x3 − 17), 3x2 ̸= 0

3.3 The Etale Sites

Given a scheme X we can define two etale sites. We will probably only need one in this seminar. There
is the small etale site

Xet
..=


objects : Etale morphisms U → X

morphisms : Morphisms of schemes over X, U → V

coverings : Surjective families of etale maps (Ui → U)i

and the big etale site

XEt
..=


objects : Schemes over X

morphisms : Morphisms of schemes over X

coverings : Surjective families of etale maps (Ui → U)i

The difference is that the small etale site is somehow only schemes that are etale over X, not all schemes
over X. We think of these as ”etale open subsets”. For X = SpecZ the big etale site is a topology on
the category of all schemes. We can now define the etale cohomology of a scheme (and a sheaf on the
etale site), it is simply

H•(Xet,F )

by analogy with our singular cohomology example, if F is some constant sheaf then this is the etale
cohomology of X with those coefficients.
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4 Sheaves on the Etale Site

Example ([?], 2.1.10). A sheaf of groupoids on SpecZEt is called a stack.

So one can think about categories as topological spaces where all the morphisms are the covers and
a terminal object is sort of the ”biggest open set”, of course you need completness and things. From
this perspective the category of schemes is just a topological space, the set is SpecZ and the opens are
all the maps. Then schemes are (particular) sheaves of sets on this topological space.

Example. If Z is a scheme over X then the functor

HomX(−, Z)

defines a sheaf of sets on Xet.
If Z is also a group scheme then this sheaf is a sheaf of groups.

Example. Let µn be the scheme defined by Tn − 1 = 0 i.e.

µn
..= SpecR[T ]/(Tn − 1)

Then µn(U) ..= HomX(U, µn) is the group of n− th roots of unity in OU (U).

Example. Define Gln to be

SpecR[Tij : 1 ≤ i, j ≤ n][Y ]/(Y det(Tij)− 1)

Then Gln(U) is the group of n× n-matricies with entries in OU (U).

Example (Structure Sheaf). Let U → X be etale. Then we define a sheaf on the etale site of X by

OX(U) ..= OU (U)

6



References

[Mil] J S Milne. Lectures on etale cohomology.

[Mil80] J. S. Milne. Étale Cohomology. Number 33 in Princeton Mathematical Series. Princeton
University Press, Princeton, N.J, 1980.

7


	Sites
	Sheaves on Sites
	The Etale Topology
	Zariski Bad
	Etale Good
	Commutative Algebra
	Geometry

	The Etale Sites

	Sheaves on the Etale Site

